Blog da UC de Linguagens de Autoria em Educação, do Mestrado em Didáctica, especialidade Tecnologia Educativa da U.Aveiro - 2010/11, 1º semestre
pesquisar neste blog
posts recentes

WEBQUEST - Uma ferramenta para as Aprendizagens

Trabalho de avaliação de recursos educativos

Simulação- Le Châtelier's Principle

Trabalho Final - Avaliação das potencialidades da plataforma PBworks como meio de uma avaliação cont...

Avaliaçao de recursos multimédia

Avaliação recurso para QI "Vogais iguais, sons iguais"

Trabalho de avaliação de recuros educativos

Plano de Trabalho - "Vogais iguais, Sons Iguais" - Versão Finalíssima

APME - Trabalho Final

Avaliação do recurso "Resolução de Problemas Geométricos usando a Heurística de Pólya"

arquivos

Fevereiro 2012

Janeiro 2012

Agosto 2011

Julho 2011

Junho 2011

Maio 2011

Abril 2011

Março 2011

Fevereiro 2011

Dezembro 2010

Novembro 2010

Outubro 2010

participar

participe neste blog

Quinta-feira, 23 de Dezembro de 2010
Guião do Flipchart sobre "Resolução de Problemas usando Equações do 1.º Grau"

Boa tarde Professora Maria João  e caros colegas de Mestrado. É importante salientar que a base de trabalho para todos os elementos do grupo de Matemática é a mesma, por isso apesar de serem dois flipcharts diferenciados , os quatro elementos do grupo de matemática, Adriana, Andreia, Arlindo e Catarina estão a trabalhar em conjunto na elaboração dos guiões de ambos os flipcharts.

Venho desta forma colocar, como acordado em grupo, o guião para a construção do flipchart sobre “Resolução de Problemas usando Equações do 1.º Grau”. O outro será postado ainda hoje.

 

- Tema: “Resolução de Problemas usando Equações do 1.º Grau.”

 

 

- Justificação do tema atendendo à experiência profissional e à literatura encontrada:

 

 

 

 

De acordo com a literatura encontrada (Resultados do Exame de Matemática do 9º ano - 2005 - 1ª chamada – Relatório; Reflexão dos docentes do 3º ciclo sobre os resultados do exame de Matemática), uma das principais dificuldades evidenciadas pelos alunos na disciplina de Matemática prende-se com a “Resolução de Problemas”. Esta dificuldade é transversal a todos os temas do 3.º Ciclo. Um dos temas onde os alunos revelam dificuldades é na área da geometria, por isso optámos pela elaboração de um flipchart que envolva a resolução de problemas geométricos.

 

Tendo por base o relatório dos Resultados do Exame de Matemática do 9º ano - 2005 - 1ª chamada, “o desempenho dos examinandos (na resolução de problemas) é fraco, independentemente do domínio temático (Álgebra e Funções ou Geometria). Apesar de se tratar de resolução de problemas simples, estes são aplicações a situações da vida real, o que exige a análise e a compreensão da situação, assim como a interpretação de resultados.”

No relatório da “Reflexão dos docentes do 3º ciclo sobre os resultados do exame de Matemática” foi referido que “Os melhoramentos a introduzir nas práticas de sala de aula incidiram, mais frequentemente, na resolução de problemas, no desenvolvimento do raciocínio, no uso de tecnologias de informação bem como de materiais manipuláveis. Foi, igualmente, referida a necessidade de mais trabalho ao nível da Língua Portuguesa, nas aulas de Matemática, através da incorporação de tarefas que impliquem a interpretação de texto, a capacidade de comunicação e as capacidades de produção de sínteses e de explicitação de raciocínios.”

Na tabela 2 (página 9) do relatório supracitado estão indicadas as dificuldades específicas demonstradas pelos alunos no exame de matemática, podendo verificar-se que a segunda maior percentagem (28%) está atribuída à resolução de problemas.

Na tabela 8 (página 16) estão especificadas as situações de aprendizagem em que se deve insistir para que os alunos superem as suas dificuldades. Verifica-se que a percentagem mais elevada (41%) diz respeito à resolução de problemas.

 

 

- Público-alvo: Alunos do 8.º e 9.º ano

 

 

- Abordagem didáctica

 

Neste flipchart pretendemos trabalhar problemas com equações de coeficientes numéricos. Na resolução dos problemas vamos adoptar a heurística de George Polya. Assim os alunos começam por fazer a leitura atenta do enunciado de cada problema, para permitir clarificar as circunstâncias e a informação pertinente, de modo a que o aluno consiga prever a solução a procurar.

A partir da informação relevante estabelece-se um plano, prevendo os passos a percorrer até chegar à solução do problema, caso exista.

De seguida, executa-se o plano previsto, com a aplicação de procedimentos apropriados geridos por regras algébricas desenvolvidas a partir do 7.º ano de escolaridade. Por último, os alunos são convidados a reflectir e analisar a solução do problema. Desta forma, aprende-se com o problema, interiorizando conjecturas para encarar novos desafios.

 

 - Qual a finalidade do flipchart

 

Pretendemos com o flipchart que os alunos consigam escrever em linguagem matemática problemas que estão em linguagem corrente. Pretendemos que os discentes recordem as regras de resolução de equações e que interpretem as soluções das equações nos contextos dos problemas.

 

- Pré-requisitos

 

Resolução de equações simples do 1.º grau (sem parênteses e sem denominadores).

 

- Uma breve descrição da(s) tarefa(s) e definição dos respectivos objectivos (em termos de aprendizagem e não de ensino)

 

Os alunos vão identificar e destacar a informação pertinente num dado enunciado escrito em Língua Portuguesa.

De seguida, são convidados a construir, a partir de frases, termos matemáticos generalizados.

Posteriormente, os discentes são convidados a seleccionar de entre um conjunto de equações aquela que melhor se adapta à situação problema.

Consequentemente, os alunos preencherão campos deixados vazios na resolução da equação e por último indicarão a solução da equação e a solução do problema.

 

 

Página/Tarefa(s)

Descrição

Objectivos da tarefa

1

Enunciar os problemas

Apresentação escrita do problema 1 (numérico):

Para combinar uma saída, o Luís diz à Patrícia: “Logo à tarde vou mandar-te uma SMS. Dás-me o teu n.º de telemóvel?”

A Patrícia responde:”Só me poderás mandar uma SMS se resolveres o seguinte enigma: O meu número é da rede VODAFONE e para além disso é composto por dois números. O primeiro é o triplo do segundo e a soma de ambos é 1652. Fico à espera da tua SMS.”

Qual será o número da Patrícia?

 

Apresentação escrita do problema 2 (de idades):

 

A Maria registou o João e o Francisco como seus amigos no Facebook em alturas diferentes.

Há dois meses, o tempo do registo do João tinha o dobro do tempo do registo do Francisco e hoje a diferença entre os tempos destes registos é seis meses.

Há quanto tempo duram estas amizades virtuais?

Ø Interpretar o enunciado de um problema.

Ø Traduzir um problema por meio de uma equação.

Ø Procurar a solução de uma equação.

Ø Interpretar a solução de uma equação no contexto de um problema.

2

Esquematizar o problema

Elementos na página:

Existe para cada problema um quadro com o texto correspondente. Do texto é possível retirar informação e colocá-la num recipiente de informação pertinente.

De seguida num segundo quadro, para cada problema e depois definir uma variável, os discentes são convidados a passar da linguagem corrente para a linguagem matemática com o preenchimento de campos vazios até à obtenção dos termos matemáticos correspondentes ao texto.

Posteriormente os discentes serão, para cada problema, convidados a escolher de entre 4 equações, aquela que representa a situação problema.

Caso a escolha anterior seja a correcta surgirá noutra página, para cada problema, a equação com espaços vazios a serem preenchidos pelos discentes até à obtenção da solução

Por último o aluno será convidado a dar, caso exista para cada problema, uma solução de entre 4 possíveis respostas. Um quadro estará correcto e três estarão errados.

Decompor o problema em pequenos problemas utilizando o modelo Top-Down.

 

 

 

 

Em síntese, no relatório da “Reflexão dos docentes do 3º ciclo sobre os resultados do exame de Matemática” é referido que “… no domínio da Matemática, a resolução de problemas, a utilização de raciocínios demonstrativos, a visualização no espaço, o cálculo e a articulação de conhecimentos foram as fragilidades mais frequentemente identificadas nos alunos.” 


tags: , , ,

publicado por arlindo-silva às 18:31

editado por mjoao em 02/02/2011 às 18:44

mais sobre os autores deste blog
Fevereiro 2012
Dom
Seg
Ter
Qua
Qui
Sex
Sab

1
2
3
4

5
6
7
8
9
10
11

12
13
14
15
16
17
18

19
20
21
22
23
24
25

26
27
28
29


tags

todas as tags

subscrever feeds

RSSPosts

RSSComentários

RSSComentários do post

ligações